
[Boppidi, 3(3): March, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[1822-1829]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

Design Round Robin and Interleaving Arbitration algorithm for NOC
Boppidi Srikanth

Srikanth.vlsi.2011@gmail.com

Abstract
NOCs (Network on Chip) are increasing in popularity because of their advantages: larger bandwidth, and

lower power dissipation through shorter wire segments. Communications in large SOCs are so important that many

designers have adopted the NOC approach. The challenges consist in offering the best connectivity and throughput

with the simplest and cheapest architecture methodology.

In this project it is proposed to Design multi-module architecture (Masters or Slaves) for Network On chip

configuration. When multi-modules are involved, there is a need to solve the problem of bus contention among the

modules, masters and slaves. To resolve this bus contention problem, two algorithms, interleaving and normal

Round robin algorithms in this architecture. In the normal mode, the Round Robin design architecture would be

implemented and as matter of configurability interleaving mode is also incorporated.

Moreover, 6x6 interleaving switch-based crossbar architecture along the proposed mechanism is

implemented and verified on Xilinx FPGA Virtex2P XC2VP30. The overall architecture primitive modules are

designed, simulated, synthesized and structured in Verilog and by using various FPGA based EDA Tools.

Keywords: Round Robin, NOC.

 Introduction
Today field programmable gate-arrays

(FPGAs) are used for a wide sector of applications.

The usage in former times was focused on rapid-

prototyping system for integrating test systems. After

the test-phase, often an ASIC approach substituted

these systems for mass-production. Due to dramatic

growth in circuit-design complexity regarding

Moor’s Law, the ability of implementing complex

architecture in a single chip always presents new

challenges. One of the issues found by designers

while implementing large SoCs is the communication

among their components. Buses are an increasingly

inefficient way to communicate, since only one

source can drive the bus at a time, thus limiting

bandwidth.

NoCs are increasing in popularity because of

their advantages: larger bandwidth, and lower power

dissipation through shorter wire segments.

Communications in large SoCs are so important that

many designers have adopted the NoC approach. The

challenges consist in offering the best connectivity

and throughput with the simplest and cheapest

architecture of methodology; whereas, many

topologies and architectures have been investigated.

This is well illustrated in [4], where researchers

propose a two-level FIFO approach in order to

simplify the design of the arbitration algorithm and

improve the bandwidth. However, this method tends

to be expensive in term of hardware.

Although the completely embedded tools of

FPGA manufactures such as Xilinx and Altera are

offered to help their customers to design the complex

Multi Processor System on- Chip (MPSoCss), their

environments only offer the bus based paradigm or

point-to-point connection. More complex MPSoCs

may require higher bandwidths than a bus-based

system can offer, or may need to be more efficient

than point to- point connections.

The idea of designing the Reconfigurable

Crossbar Switch for NoCs to gain a high data

throughput and to be capable of adapting topologies

on demand was presented in [5]. Their evaluation

results showed that output latency, resource usage,

and power consumption were better than a traditional

crossbar switch. Nevertheless, they did not focus the

problem while operating many-to-one and one-to-

many data communication.

Our proposed crossbar architecture is

designed with two contributions: First, our crossbar

has to be light weight, requiring few FPGA

resources, and thus suitable for both small and large

resources with high bandwidth efficiency on FPGA

based systems. Second, the proposed crossbar

architecture hast o solve the output delay (output

[Boppidi, 3(3): March, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[1822-1829]

latency) problem while multicasting on all source

situations. Moreover, in order to obtain the work

efficiency, 6x6 interleaving switch-based crossbar is

realized by Verilog, and verified on the Xilinx FPGA

Virtex 2Pro XC2VP30. In respect of the verification,

the test environment has introduced in this paper.

The rest of this paper is organized as

follows: section 2 overviews communication

problem. Section 3 presents switch based crossbar

structure. In section 4, we implement the primitive

component and 6x6 interleaving switch-based

crossbar, and compare the proposed switch-based

crossbar with general propose switch-based system

and bus-based system.

Test environment and experimental result

are presented in section 5. Finally, conclusion is

summarized in section 6.

Communication Problem
In Fig. 1, all communication in a process

group becomes many communications involving an

arbitrary subset of processor from the system’s point

of view. In order to efficiently support data

communication, a system has to support one-to-one

(uni-cast), one-to-many (multicast), many to-

one(gathering) and many-to-many communication

primitives in hardware. Actually, most

interconnection can support uni-cast, but not

gathering and multicasting.

In Fig. 2(a) shows a multicast communication with

three destinations where process P0 has to send the

same data to three processors: P1, P2 and P3.

Without the multicast functionality on

interconnection, the system can use unicast

functionality to send data to all destinations

sequentially. However, blocking will occur, if P0 is

executing sending state to P1, and P1 has not yet

execute receiving state, P0 is blocked; meanwhile, P2

is executing receiving state, and is blocked because

P0 has not yet executed sending state. Obviously,

system resources are wasted due to unnecessary

blocking. Fig. 2(b) shows gathering data

communication from three sources to one destination.

Because of sending data from all sources, congestion

is found at destination where it can be reduced by

applying source priority. Supposing P1, P2 and P3

are the first, second and third priorities. While their

data arrive at P0, the data from P1 will be the first

forwarding; meanwhile, the rest will be buffered.

Thus, the output latency of system will increase, and

buffer will also require.

In order to solve these problems, we apply

interleaving technique to switch-based crossbar

architecture on FPGA, and compare resource usage

as well as estimated frequency with [1,2].

Switch-Based Crossbar Structure
The major components that make up the

switch-based crossbar consist of Input Port module,

Switch module and Output Port module. Depending

on the kind of channels and switches, there are two

alternatives for designing switch-based crossbar:

unidirectional and bidirectional [6]. In this paper,

unidirectional switch-based crossbar is selected and

simplified with 6x6 switch-based crossbar structure

shown in Fig. 1 because of resource constraint.

Obviously, transmitting data from a Source Node to a

Destination Node require crossing the link between

the Source Node and the Input Port module, and the

link between the

Output Port module and the Destination

Node where the Switch module in data path will

dynamically establish the link for the Output Port

[Boppidi, 3(3): March, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[1822-1829]

module according to switching protocol. According

to the 6x6 switch-based crossbar architecture, its

switching protocol shows in Fig. 2.

Because of resource constraint on the target

FPGA [2], data width, the N.of word register, the

destination port register are 16,10 an d 6 bits

respectively. Moreover, synchronous protocol is

applied to synchronize all modules in the switch-

based crossbar-Clock signal, Ready signal and

Acknowledge signal.

Fig. 2 shows the 10-bit Last Significant Bit

(LSB) of switching protocol, which defines the

number of packets required transferring from a

Source Node to a Destination Node, where the

maximum is 1,024 packets per time, and the rest

define the Destination Node. For example, when the

Source Node1 wants to transfer 100 packets to the

Destination Node number 3 and 4, the 16-bit

switching protocol has to be 0011_0000_0110_0100

(0x3064H).

A. Input Port module

In this section, the architecture and behavior

of the Input port module are detailed. As shown in

Fig. 5(a), there are three components in this module

comprised of a 16-bit tri-state buffer, a 1-bit tri-state

buffer and a finite state machine (FSM) component

where the N.of word register and the destination port

register are resided. Its behavior shows in Fig. 5(b)

based on switching conceptual [1].

At the beginning, the state is in an idle state,

and then the header ready signal enables HIGH to

inform a Source Node that ready to read the

switching protocol. As soon as the 16-bit switching

protocol is asserted at the

Data in signal and the Data in valid signal,

the state goes to the next check state. In this state, the

16-bit switching protocol is separated and written on

the N.of word register and the destination port

register resided in FSM module, where 10-bit low

and 6-bit high are written on the N.of word register

and the destination port register; meanwhile, the

register port signal is read to check, whether or not

the required destination ports are free. If it is free, the

state will go to the req state.

In the req state, the N.of words register, the

destination port register and the req signal are read

and presented on the N.of words signal and the N.of

word valid signal. When the rsp signal enables

HIGH, the channel for transferring data is

guaranteed, and the state goes to the Run state. In the

Run state, the data in ready signal enables HIGH. The

16-bit data in signal and the data in valid signal are

sequentially asserted into the channel. When the lasts

data is completely forwarded, the rsp signal from the

Output port module will enable LOW, and the state

will start to the next cycle.

B. Output Port module

In this section, the Output Port module

architecture and the flow diagram are explained in

detail. As shown in Fig. 6(a), there are three

components of this module, comprised of a 16- bit

six-port multiplexer component which used to

multiplex the Data in signals coming from the

Switch Module, the Round- Robin component

assigned to guarantee the fairness of all input

requirements and the FSM component where the 10-

bit counter register and the 6-bit Port Status register

used to count down a number of through packets and

to identify that can occupy the path of this Output

port module are resided. Since interleaving

mechanism bases on Time-Division-Multiplexer

(TDM)[7], the 16-bit six-port multiplexer component

can multiplex all Data in signals depended on Time

Slot. For instance, Fig. 7(a) and 7(b) show the timing

diagram, and the 6-bit Port Status register where all

Source node and the Source Node number 1,2,5 and 6

require transferring data to one Destination Node, the

6-bit Port Status register in the Destination Node will

be 111111 and 110011.

[Boppidi, 3(3): March, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[1822-1829]

Fig. 6(b) explains its behavior. At first, the state is in

an Idle state, and the mode signals are read where

there are two kind of possible modes, normal mode

and interleaving mode. In the normal mode, the

Round Robin component will be enabled but will be

disabled in the interleaving mode. Whenever a

Source Node requires transferring its data to a

Destination Node, the req signal of the Input Port

module connected with the Source Node will enable

HIGH. Then, at the Output-Port module connected

with theDestination Node, each bit of the 6-bit grant

register related with each req signal of each Input

Port module will set “1”. The N.of words signal and

the N.of words valid signal will be read and stored

into the temporal register. Then, the state goes to the

Write state. In the Write state, each bit of the grant

register is read to check the Source Node’s

requirement and to identify the location of the next

state. In order to simplify, supposing the grant

register contains 101100.

It implies that the input port modules

number 3,4 and 6 will forward their data to the output

port module. Therefore, the state will start at the

Run3 state, and the Data in ready signals number 3,4

and 6 will be enabled HIGH. Until the Run6 state is

executed, the state goes to the Check state. The

counter register counting the forwarded packets is

checked, whether or not the forwarded packets has

been completely sent. Whenever, they have been sent

properly this counter register will be “0000000000”

and the Clear state will be done. At the Clear state,

the rep signals at 3,4 and 6 are enabled LOW and the

grant register will be“000000”, as well as the state

will begin the next cycle

C. Switch Module

Switch module crosses the link between the Input

Port module and the Output Port module. Underneath

the Switch module, there are five components

connecting with two sets of signal. First, the control

signal consists of the req signals and the resp signals.

Second, the data signal composes of the data out

valid signal, the data out rdy port signals and the data

out signal.

 Two types of switch component are context

switch and multiplexer. All components ofeach set

can be mapped with two types of switch component

as shown in Fig. 8, where they are controlled by the

3-bit Destination port signals of Input Port module

[Boppidi, 3(3): March, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[1822-1829]

The main design modules consist of interleaving

timer module, Request register, data-mux, Mask

register and state Machine Controller and Grant

The designed arbiter project is proposed in AMBA-

AHB Matrix.

Implementation
The problems in section 2 and the primitive

modules of the switch-based crossbar architecture in

section 3 are implemented and realized on the target

FPGA in this section. All primitive modules are

structured by Verilog, verified their behaviors with

Model Sim 6.2c, synthesized their resource usages

and estimated frequency on the Xilinx FPGA Virtex

2P XC2VP30 by ISE tool as shown in Table1. To

realize the target FPGA, 6x6 interleaving switch-

based crossbar is introduced.

Test Environment And Experimental Result
The 6x6 interleaving switch-based crossbar

designed and implemented in section 4 is evaluated

on test environment as shown in Fig. 9. The Source

Nodes and the Destination Nodes connecting with

our crossbar can reconfigurable where several IP

cores can take place. Before testing, 16-bit counter

modules are placed on all Source Nodes, and the

available FPGA I/O pins are mapped to all

Destination Nodes.

The environment is set as following:

1. The system operates at 100 MHz,

2. The interleaving mode is set to default,

3. All 16-bit counters are ready to generate the

switching protocol and the 256 packets,

4. TLA5204 logic connects to this environment

to measure and capture the 16-bit data out

signal and data out valid signal at the

Destination node.AHB Matrix. module.

Since the bandwidth and time period are

considered, when more than one Source Nodes

require transferring a large number of packets to the

same Destination Node simultaneously, the number

of the Source

Node is increased one at a time in test cases. Fig. 10

and 11 show the captured data while one Source

Node and six Source Nodes are transferring the 256

packets to the same Destination Nodes with

interleaving functionality on our crossbar

The bandwidth results come out from this formula:

BW = Nof Packet *bit * Nof Inputdata /TimePeriod

where BW is bandwidth, NofPacket is the number of

packets, bit is data width, N.ofInputdata is the

number of input data, and Time period is the time

period of data out signal measured at the Destination

Node.

[Boppidi, 3(3): March, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[1822-1829]

Conclusion
 This paper proposes and implements the

interleaving mechanism to overcome the output delay

(latency) while operating many-to-one and one-to-

many data communication. Moreover, resource usage

and bandwidth are acceptable when it is compared

with the general propose switch-based system and

bus-based system.

References
[1] D. Bafumba-Lokilo, Z. Savaria, J. David

,“Generic Crossbar Network on Chip for

FPGA MPSoCs”, Circuits and Systems and

TAISA Conference, 2008, pp 269-272.

[2] Xilinx , “On-chip Peripheral Bus V2.0 with

OPB arbiter”, “Processor Local

Bus(PLB)v4.6(v1.03a)”,

http://www.xilinx.com.

[3] H.Po-Tsang, H. Wei , “2-Level FIFO

Architecture Design for Switch Fabrics in

Network-on-Chip”, Circuits and Systems,

ISCAS 2006, Proceedings 2006, IEEE

International Symposium on, pp.4863-4866.

[4] M. Hübner, L. Braum,D. Göhringer, J.

Becker, “Run-Time Reconfigurable Adaptive

Multilayer Network-On-Chip for FPGA-

Based systems”, IEEE International

Symposium on In Parallel and Distributed

Processing, 2008, pp. 1-6.

[5] C. Hilton, B. Nelson, “PNoC: a flexible

circuit-switched NoC for FPGA based

systems”, IEE Proceeding Computing Vol.

153, 2006, pp. 181-188.

[6] C. Qiao, R.Melhem, “Reconfiguration with

Time Division Multiplexed MIN’s for

Multiprocessor Communication”, IEEE

Transactions Parallel and Distributed

System, Vol. 5, 1994, pp. 337-352.

